
EPISTEMIC CLOSURE AND

COMMUTATIVE, NONASSOCIATIVE

RESIDUATED STRUCTURES

SEBASTIAN SEQUOIAH-GRAYSON∗

Formal Epistemology Project
University of Leuven

Synthese, 190:1, 113–128, (2013)

Abstract

K–axiom–based epistemic closure for explicit knowledge is rejected for
even the most trivial cases of deductive inferential reasoning on account
of the fact that the closure axiom does not extend beyond a raw conse-
quence relation. The recognition that deductive inference concerns inter-
action as much as it concerns consequence allows for perspectives from
logics of multi–agent information flow to be refocused onto mono–agent
deductive reasoning. Instead of modeling the information flow between
different agents in a communicative or announcement setting, we model
the information flow between different states of a single agent as that
agent reasons deductively. The resource management of the database of
agent states for the deductive reasoning fragment in question is covered by
the residuated structure that encodes the nonassociative Lambek Calculus
with permutation, bottom, and identity: NLP01.

keywords: closure, epistemic logic, interaction, information, commu-
tation, non–association, mobiles, NLP, residuated structures, categorial
grammars, Lambek.

1 Introduction

That logic concerns interaction just as much as it concerns consequence is an
insight has most eagerly been adopted in various logics of multi-agent informa-
tion flow, such as Public Announcement Logics, and Dynamic Epistemic Logics

∗Postdoctoral Research Fellow, Formal Epistemology Project, Department of Theoretical
Philosophy, Faculty of Philosophy, University of Groningen - Netherlands. Senior Research
Associate, IEG - Computing Laboratory, University of Oxford. Research Associate, GPI -
University of Hertfordshire.

1

and so forth (van Benthem (2009), Baltag, Moss, and Solecki (1998), Baltag
and Smetts (2008), van Ditmarsh, van der Hoek, and Kooi (2008)). What we
will see, is that paying proper attention to interaction also has a rich payoff for
mono–agent, deductive scenarios. The basic idea is this; instead of examining
the information flow between different agents in a communicative setting, we
examine the information flow between different states of a single agent as the
agent reasons deductively. We will see also how this approach has its roots in
the the pure function application of the Categorial Grammar literature, due to
Ajdukiewicz (1935), Lambek (1958), and Lambek (1961).

The first step, undertaken in subsection 1.1, is to motivate the move to an in-
teractive epistemic logic by looking at epistemic closure. This will take us into
issues involving universal and existential modalities (subsection 1.2), implicit
and explicit knowledge (subsection 1.3), and finally to the epistemic relevance
of the distinction between external conjunction and internal conjunction (sub-
section 1.4). With the motivation in place, we will be in a position to put the
relevant model together. This is the task undertaken in section 2.

1.1 Motivation: Epistemic Closure

As motivation, consider the K–axiom:

2(φ⇒ ψ)⇒ (2φ⇒ 2ψ) (1)

interpreted epistemically, so as to get epistemic closure:

Kα(φ⇒ ψ)⇒ (Kαφ⇒ Kαψ) (2)

By “interpreted epistemically” we mean that KαX is read as agent α knows that
X. This is importantly distinct from faux-epistemic interpretations such as agent
α is entitled to believe that X, in which case K would be a deontic permissibility
operator, not an epistemic one (or more realistically, an iteration of a deontic
permissibility operator and a doxastic belief operator, see (3) in subsection 1.2
below). The conceptual difference is stark enough, but the formal difference is
starker still. This formal difference turns on the distinction between universal
and existential modalities.

1.2 Universal and Existential Modalities

The permissibility operator (as well as the belief operator) is an existential
modality whilst the knowledge operator is a universal one: Taking necessity
‘2’ and possibility ‘3’ (either metaphysical or logical will do) as the canonical
examples, then as per the textbook exposition, a formula is necessarily true
iff it holds at all points in the relevant model, whilst by contrast a formula is
possibly true iff it holds at some points in the relevant model. We have simi-
larly contrasting modality pairs with knowledge and belief, as well as obligation
and entitlement/permission: the canonical semantics takes the relevant atomic
formulas constructed out of the first modality in each pair to hold at all points

2

in the model, and takes those constructed out of the second to hold at some
points in the model.

Keeping track of the universal and existential status of modalities in various
multi–modal logics is complex enough so that it is common practice to ‘box’
or ‘diamond’ the various modal operator letters in order to keep track of their
universal/existential status. That is, a universal modality ‘m’ will be written
as ‘[m]’, and an existential modality ‘m’ will be written as ‘〈m〉’. To reiterate,
examples of universal modalities are those such as necessity: 2, knowledge:
[k] and obligation: [o], with their corresponding existential modalities being
possibility: 3, belief: 〈b〉 and entitlement: 〈e〉 respectively.1 In this case, closure
under belief entitlement comes out as follows:

〈e〉〈b〉α(A⇒ B)⇒ (〈e〉〈b〉αA⇒ 〈e〉〈b〉αB) (3)

As rich a philosophical potential as (3) might have, we note that (3) is not an
instance of the K–axiom. Having fixed on the K–axiom, we need to fix on the
type of knowledge involved.

1.3 Implicit Knowledge and Explicit Knowledge

We take K to stand for explicit knowledge. If we were to take K to stand for
implicit knowledge, then closure would hold trivially, and tell us nothing epis-
temically interesting at all. The reason for this is straightforward enough: By
taking K to stand for implicit knowledge, we force a collapse between what fol-
lows deductively from the agent’s knowledge–base on the one hand, and what
the agent knows on the basis of this knowledge–base on the other. They simply
become the very same thing. Implicit knowledge does away with any require-
ment of awareness or realisation. For knowledge to be of any use to an agent
with respect to guiding the agent’s actions, be the actions cognitive or be-
havioural, the agent must be aware of the information inside the scope of the
knowledge operator. Simply put, knowledge is not of any actual use until it
becomes explicit.

By taking KαX to encode agent α knows that X under explicit knowledge,
closure becomes an interesting epistemic principle. It is also false. It is not
merely false in the sense that it fails to hold for suitably complex instances of
deductive inference. It is false in the sense that it fails to hold for any instance
whatsoever.2 Closure fails to hold for any instance of deductive inference from
an agent’s knowledge–base because closure merely expresses a static consequence
relation, and deductive reasoning is an essentially dynamic, non-static process.

This is precisely where interaction comes in: Even if α explicitly knows that
A⇒ B, and also explicitly knows that A, it never follows simply on the basis of
this, that α then explicitly knows that B. At least not when this conjunction
is Boolean, or external.

1By “corresponding existential modalities”, we do not mean to suggest that all such modal-
ity pairs are duals.

2Except for the single case where we have A→ A and A.

3

1.4 External Conjunction and Internal Conjunction

The distinction between external, or Boolean conjunction and internal conjunc-
tion is brought out nicely via precisely these epistemic considerations. Suppose
that KαX and that KαY , then we may truthfully state that Kα(X ∧Y). How-
ever, it may well be the case the α has never been aware of this conjunctive
proposition, despite being aware of the conjuncts independently. This situation
will occur, for instance, when the knowledge-states that X and that Y have oc-
curred to α at suitably distinct times. Boolean conjunction is known as external
conjunction precisely because of this external perspective taken on a system’s
states (and an agent is just one type of system).

For α to come to know that B on the basis of knowing the premises, α must
merge or combine the information that the premises encode. This is how the
gap between what follows deductively from an agent’s knowledge–base on the
one hand, and what the agent comes to know explicitly on the basis of that
same knowledge–base on the other, is bridged. It is here that we must acknowl-
edge the role of interaction for mono–agent deductive–reasoning scenarios. To
model this adequately, we need an internal conjunction that brings the inter-
active/combinatorial information–merging reasoning actions of the agent to the
foreground. We also need a few other things (but not many).

1.5 Onwards

In section 2 we will see how a nonassociative and structure–preserving commu-
tative logic of mobiles (half way between sequences and multisets, see Moortgat
(1995)) with an operational semantics will deliver a useful model. In section 3,
we will see how some residuation conditions allow us to translate between the
instructions for a successful reasoning procedure, and the executions of these
instructions that underpin the reasoning procedure itself.

2 Weakly Commuting Interaction Models

A semantics is operational if it allows an explicit representation of semantic op-
erations on individual points in the model (Buszkowski (1986)). In the model
below, the points are understood as information states. This though, is still
fairly general. Since we are concerned with the information flow in deductive
inference, the points are to be understood as information–bearing states of an
agent as the agent reasons deductively. This information–bearing is taken to be
explicit knowledge. The interplay between the semantics so understood and the
resulting syntax is philosophically interesting: The information in a database
will be structured in different ways, depending on the use to which the infor-
mation is to be put. We can think of this structure as a type of database
grammar. The grammar will set the constraints as to structure of the database.
In short, we will specify the grammar of a fragment of the “cognitive langauge”
of deductive reasoning.

4

This first thing to do is to get a weakly commuting frame up and running.
This is the task of subsection 2.1. Weak commutation is simply what hap-
pens when commutation is present, but association is not. There is a small
terminological point that needs to be made at this point. Commuting but non–
associating logics are not all that common. A consequence of this is that terms
such as “commutation”, “permutation”, “exchange” and so on, are variously
used to denote both pure pair–wise one–place swaps, and also a stronger n–
place commutation that follows from the one–place variety plus association. A
neat heuristic is this – in commutative nonassociative logics, we are restricted
to pairs, although the left and right–hand members of these pairs may trade
places harmlessly. With logics that both commute and associate, we are not
restricted to pairs, and members may switch as many places as they like. This
is a little abstract for now, but is laid out in detail below.

With this done, in subsection 2.2 we look at the well–known case of fully
non–commuting examples from natural language semantics via categorial gram-
mar. This is not merely an aside, but will give us the conceptual framework of
databases and information processing that is central to the perspective worked
out and adopted for mono–agent deductive reasoning. The next step, undertak-
ing in subsection 2.3 is to build the resulting model on the back of the frame from
2.1 via an operational semantics. With this in place, we will be in a position
to make the structured information processing properties relevant to interactive
epistemic logic explicit (the business of subsection 2.4). In subsection 2.5 we
will see how to recover association and strong commutation. In the final sub-
section, 2.6, we will bring all of this together in order to specify a fragment of
the grammar of deductive reasoning. With this done, we will be in a position to
apply the framework explicitly to the case of mono–agent dynamic reasoning.
This the business of section 3.

2.1 A Commutating, Non–Associating Information Frame

Where A,B . . . are types of uninterpreted propositional formula φ, ψ, . . . such
that φ : A is read as formula φ is of type A, the language of our logic, the nonas-
sociative Lambek Calculus with permutation, bottom, and identity (NLP01) is
given as follows:

A ::= φ | A | 0 | 1 | A⊗B | A(B | A0 (4)

Take an information frame F 〈S,v, •〉 with weak (one place) commutation and
Cut, along with the two binary connectives ⊗, and(, the unary connective 0,
and the constants 0 and 1. S is a set of incomplete, or partial information states
x, y,. . . .3 The binary relation v is a partial order on S of informational develop-
ment/inclusion. • is the (commutative and non-associative) binary composition
operator on information states. ⊗ is (commutative and non-associative) internal

3In doxastic cases, we would allow for inconsistency also. But since knowledge is factive if
anything is, we disallow this property here.

5

conjunction (merge/fusion). (is interactive implication, and ⊥ is interactive
negation on account of its being defined in terms of (and 0:

A0 := A(0 (5)

0 is bottom, and 1 is unit/identity such that:

1⊗A = A = A⊗ 1 (6)

Hence we have weak commutation around state–combination, and (correspond-
ingly) merge, and weak–weak commutation around identity. Weak–weak com-
mutation around identity is standard enough. Weak commutation (around com-
bination and fusion) allows pair–wise one–place swaps: x • y = y • x at least
insofar as informational progress is concerned, and A⊗B = B ⊗A at least in-
sofar as derivability is concerned. That is, for our interactions, commutation is
permissible within the parameters of the given bracketing. Hence the following
are of the same type:

A⊗ (B ⊗ C) | A⊗ (C ⊗B) | (C ⊗B)⊗A | (B ⊗ C)⊗A (7)

Whereas:
B ⊗ (A⊗ C) (8)

differs. Exactly why it is that this should be the case for a base–calculus in the
context of a significant fragment of mono–agent deductive reasoning is made
clear in section 2.4 below. There is a difference in other contexts, natural lan-
guage grammatical ones say, where strict preservation of left–right attachment–
detachment is crucial. The natural language semantics cases from categorial
grammar are not merely formal relatives. They in fact give us a the starting
point for the very conceptual framework that we need.

2.2 Categorial Grammars: Pure Sequences, and Pairs

This starting point is to understand a natural language lexicon as a database
of sorts, and the grammar (in this case the strict ordering preservation) as a
collection of constraints on the processing of that database.

This ordering preservation is due to the fact that natural languages tend
to have fragments with exact rules for the ordering of words. For example,
‘Frederike peddles’ is grammatically well–formed, whereas ‘Peddles Frederike’
is not. In this manner, the intransitive verb ‘peddles’ is of type n → s, since
when it is applied to the right of a noun (type n), the result is a sentence (type
s). By contrast, the adjective ‘happy’ is of type n← n. This is due to the fact
that when ‘happy’ is applied to the left of another noun, the result is another
(complex) noun (phrase): ‘Happy Friederike’. In logics with no commutation
(other than possible weak–weak commutation around 1 if 1 is present), the
structures are at least pure sequences, and if associativity is rejected also, then
they are pairs.

6

This much is familiar from the categorial grammar literature. What is less
familiar is the following useful way of describing the relevant semantic con-
straints. We can think of natural language (in particular a natural language
lexicon) as a database. In this case, a grammar may be thought of as a col-
lection of processing constraints on the database. These processing constraints
are operational in the strictest sense of the term. The tell us which operations
are permissible insofar as generating well–formed, or meaningful, strings in the
natural language is concerned. In informational terms, they tell us which opera-
tions are permissible insofar as generating information is concerned. A detailed
look at grammars as processing constraints on a database may be found in
Sequoiah-Grayson (2009b).

For our purposes here however, all we note is that a natural language lexicon
is only one type of database. A consequence of this is that we may think of
the processing constraints on any database (and not simply natural language
lexicons) as grammars. This is precisely what is done below with the database
relevant to mono–agent deductive reasoning. The rest of this section is dedicated
to developing this idea in more detail. The first step is to specify the relevant
model.

2.3 The Model

A model M := 〈F,〉 is an ordered pair F 〈S,v, •〉 and such that is an
evaluation relation that holds between members of S and formulas constructed
out of our binary connectives ⊗, and (, and constants 0 and 1. In what
follows, we will often write x, y, . . . ∈ F as shorthand for x, y, . . . ∈ S where
S ∈ F. Where A is a propositional formula, and x, y, z ∈ F, obeys the
heredity or monotonicity condition:4

For all A, if x A and x v y, then y A. (9)

And also obeys the following conditions for each of our connectives and con-
stants:

x A⊗B iff for some y, z,∈ F s.t. y • z v x, y A and z B. (10)

x A(B iff for all y, z ∈ F s.t. x • y v z, if y A then z B. (11)

x 0 for no x ∈ F. (12)

x A0[A(0] iff for all y, z ∈ F s.t. x • y v z, if y A then z 0. (13)

x 1 iff x ∈ T, for all x ∈ F. (14)

(14) is less straightforward than are (10)—(13). We firstly define the set of
propositions Prop(F) on our frame F as the set of all subsets X of S ∈ F such
that they are upwardly closed: if x ∈ X and x v x′, then x′ ∈ X.

4We would drop this condition for certain doxastic scenarios where non–monotonicity is a
distinctive property.

7

We can now see how it is that T in (14) is a truth set. Truth sets come in
left and right versions. For any subset T of Prop(F):

• T is a left truth set iff for all y, z ∈ F, y v z iff for some x ∈ T, x • y v z.

• T is a right truth set iff for all y, z ∈ F, y v z iff for some x ∈ T, y •x v z.

Given that we have commutation on our frame, our truth set T is non–directional.
In other words, since x • y = y • x, the left and right truth sets collapse into
a single, non-directional truth set. The converse does not hold. The “for some
x ∈ T” constraint in the right hand clause of both truth set conditions allows
us to restrict commutation to just these x. This is what allows 1 to commute
around propositions in logics that are otherwise non–commutative. Intuitively,
the state x carrying the information 1 behaves around other states in the same
manner as does 1 around propositions (see (6) in subsection 2.1 above).

With the model conditions laid bare via the operational semantics, we can
look at how the various connectives deliver with respect to information process-
ing environments.

2.4 Databases and Information Processing

Our merge and implication connectives interrelate in the following manner:

A⊗B ` C iff B ` A(C (15)

(15) is the standard residuation condition, the algebraic counterpart to impli-
cation intro/elim. Residuation conditions encode various substructural logics,
with the interesting properties of residuated structures (i.e. their conditions) be-
ing captured via the presence or absence of various structural rules. In our case
we are understanding the residuation condition in (15) to specify the processing
constraints on a database.

We take ` to be a processing–gate in the sense that X ` A is read as process-
ing the information in X generates the information that A. Exactly what it is
that processing amounts to depends on the structure of the database in question,
which is in turn fixed by the structural rules at work. Since the merge operation
is simply combination, and not directional application, we get A ` B(C from
A ⊗ B ` C by commuting on A ⊗ B so as to get B ⊗ A. This is one sense in
which we depart from Ajdukiewicz’s original contribution to categorial gram-
mar, since we do not need to keep track of left–right attachment–detachment.
The only structural rule we will admit except for Weak Commutation is Cut.
Cut is important for making use of the relevent information interactions at work
in basic inference. Association however, is not. To see this, set the following
(labels occur inside brackets):

φ⇒ ψ(A), σ ⇒ φ(B), σ(C), φ(D), ψ(E) (16)

In such a case, we have it that:

A⊗ (C ⊗B) ` E (17)

8

(17) is a result of Cutting on D, since:

C ⊗B ` D, and A⊗D ` E. (18)

It is in this sense that cut underpins the most fundamental notion of information
interaction, or processing. However, suppose that we were to associate on (17).
In this case, we would have it that:

(A⊗ C)⊗B ` E (19)

This is not good. The result of combining the information in A with the in-
formation in C is nothing such that were it to be applied to the information
in B we would get the information in E. In fact, no information results from
the combination of information encoded by A with information encoded by C.
Such an attempt is a “dead process”, that cannot be carried out. To see this, we
introduce types; given that φ⇒ ψ(A) and σ(C), it is the case that φ⇒ ψ : C0.
Hence φ ⇒ ψ : C (0 via (5). For any state x C (0, we know that it is
that case that if we combine this information with any other state y s.t. y A,
then the result will be a state z s.t. z 0 via (13). However, we know that 0
is not supported via any state via (12).

In information processing terms, some information is of type C0 iff its com-
bination with information of type C can never generate any information. This is
a conceptually parsimonious way of reading the frame condition in (13). Taking
interactive implication to be functional, along the lines of the Lambek Calculi,
then C0 is the type of function that can never take information of type C as an
input, on account of it never outputting any information on the basis of inputs
of this type. This makes perfect sense in our interactive/dynamic setting. In a
static setting, negation is ruling out truth. In an interactive/dynamic setting
however, negation will rule out particular interactions, or processes.5

Now we can see why it is that a strong, unrestricted (two-place) commutation
is just as “de-railing” as associativity. This would allow us to get from (A⊗B)⊗
D to (A ⊗D) ⊗ B – but now just set φ(A), φ ⇒ ψ(B), ψ(C), ψ ⇒ σ(D), σ(E).
Similar results can be gotten for the other structural rules by adjusting the
setup in (16) appropriately, see Sequoiah-Grayson (2009c). Importantly, strong–
commutation and association are not independent.

5Negation in a dynamic setting as process exclusion is a topic unto itself. We can extend
the operation into a fully directional process exclusion system by dropping even weak com-
mutation. This will allow us to split our interactive implication (into a double implication
pair 〈→,←〉, that will in turn allow us to define a split negation pair 〈∼,¬〉 which we may
define as ∼A := A→ 0 and ¬A := 0← A respectively. For an examination of logic–invariant
split–negation properties in terms of process exclusion, as well as an examination of its philo-
sophical status, see Sequoiah-Grayson (2009a). For a working through of a series examples
of process exclusion, both directional and non–directional, as well as an examination of the
connections with the related notion of negation as test–failure in dynamic predicate logic, see
Sequoiah-Grayson (2009b).

9

2.5 Strong–Commutation Recovery and Association Re-
covery

Weak–commutation with associativity recovers strong–commutation, and weak–
commutation with strong–commutation recovers associativity:

• For the first recovery, start with (A⊗ B)⊗D, then associate to get A⊗
(B ⊗D), then weakly–commute to get A⊗ (D⊗B), then associate again
to get (A⊗D)⊗B). 2

• For the second recovery, start with A ⊗ (B ⊗D), and strongly commute
to get B ⊗ (A ⊗ D), then weakly–commute to get (A ⊗ D) ⊗ B, then
strongly–commute to get (A⊗B)⊗D). 2

In otherwords, we have generative as well as independent reasons to reject as-
sociativity and strong–commutation.

With this much done, we are in a position to specify the processing-constraints,
or grammar, of a fragment of mono–agent deductive reasoning.

2.6 The Grammar of Deductive Reasoning

The grammar of deductive reasoning, a cognitive–language if you will, has obvi-
ous fragments with useful properties captured by a commuting, non–associating
(i.e. weakly–commuting) logic. The logic corresponds to NLP: the nonasso-
ciative Lambek Calculus with permutation, where permutation is understood in
the pair–wise sense such that is amounts to:

x • y v z = y • x v z (20)

Specifying explicitly the pairwise nature of the permuting operation is not re-
dundant. This is because it is commonplace in the literature to use ‘permutation’
to denote the strong–commutation that follows from commutation, or pairwise
permutation, and association. This is a simple function of the fact that commu-
tating, non–associating logics have are rare, so the resulting stronger permuting
operation, allowing permutations through bracketing, or structure, has been the
default.

The structure of the data–base on the left–hand–side of the processing gate
`, that is X in X ` A that is specified by the grammar is that of mobiles. Mo-
biles are simply non–associating but bracket–sensitive–commutating structures.
Since we can get strong–commutation from weak–commutation if we also have
association, the addition of association would collapse the structure of our data–
base into multisets (since we do not have contraction). But multisets have no
structure at all, they have merely a taxonomy. Mobiles have some structure, but
less than do pure sequences (where even pair–wise commutation is prohibited).
If we had neither commutation nor association, we would have static pairs, with
a fixed left component and a fixed right component. Mobile may be thought
of as mobile pairs, which is what they really are after all; pairs whose left and
right components may switch places.

10

It is important to appreciate that what is happening here is not simply syn-
tactic (although it can be read off the syntax, which is part of the appeal).
Merge (along with our implication) is being interpreted as a relation between
information states. It is in this sense that interaction structures (so–christened
due to their being constituted by interactive conjunctions) such as that on the
left hand side of (17): A ⊗ (C ⊗ B), are robustly semantic. Two interaction
structures with the same form will not necessarily be equivalent, since they may
be underpinned by different information states. Extracting the step–wise in-
formation state combinations across S corresponding to the relevant interaction
structures is a straightforward mechanical task involving nothing more than
successive applications of the conditions outlined by (10) above. This is most
easily seen via some examples.

3 Mono–Agent Dynamic Reasoning

In subsection 3.1 we will look at information processing operations underpinning
interaction structures, as well as those processing operations underpinning the
corresponding processing structures; those conditional information processing
structures got from interaction structures via the residuation conditions in (15).
The task undertaken in subsection 3.2 is to interpret interaction structures and
processing structures in terms of mono–agent deductive reasoning actions. Pro-
cessing structures will be interpreted as instructions, and interaction structures
will be interpreted as executions of these instructions.

3.1 Interaction Structures and Processing Structures

With respect to (17): A ⊗ (C ⊗ B) ` E, we have the following corresponding
step–wise information state combination:

x A⊗ (C ⊗B) iff for some w, y, z ∈ F s.t. w • (y • z) v x,
w A, y C, and z B. (21)

The information states x, y, . . . ∈ S may be naturally interpreted as states of
α as α reasons deductively. In this case, the information state combination
w • (y • z)[v x] specifies the step–wise reasoning procedure that α must engage
in in order to be truthfully said to know (on the basis of the premises at least)
the result of the merged propositions, namely ψ. Since, y C, and z B via
(21), and σ(C) and σ ⇒ φ(B) via (16), y • z v v, where v D, and φ(D) via
(16). Since w A via (21) and φ⇒ ψ(A) via (16), w • v v x, where x E and
ψ(E) via (16). 2

Via (15), we can transform interaction structures into iterated conditional
information processing structures. Still taking (17) as our case, via three appli-
cations of (15) and one application of (6), we generate:

1 ` B((C ((A(E)) (22)

11

From A⊗ (C ⊗B) ` E we get C ⊗B ` A(E via the first application of (15).
From C ⊗B ` A(E we get B ` C ((A(E) via the second application of
(15). From B ` C ((A(E) we get B ⊗ 1 ` C ((A(E) via (6). From
B ⊗ 1 ` C ((A(E) we apply our third and final instance of (15) in order
to get 1 ` B((C ((A(E)). 2

We can understand the processing structure on the right hand side of (22)
as a typed function. It is the type of function that takes inputs of type B,
and returns another function as the output. The function that it returns as
an output is the type of function that takes inputs of type C, and returns yet
another function as an output. This function is the type of function that takes
inputs of type A and returns an output of type E (which in our case is ψ, since
ψ(E) via (16)).

Similarly to interaction structures, the processing structures/function types
are individuated by information states. With respect to (22), and via (11), we
have the following:

x B((C ((A(E)) iff for all s, t, v, w, y, z ∈ F s.t. ((x • y) • v) • t v s,
if z C ((A(E), and y B, and w A(E, and v C, and t A,

then s E. (23)

Since x • y v z, z • v v w, and w • t v s. 2

We can now turn our attention to examining the conceptual relationship
between interaction structures and processing structures on the one hand, and
mono-agent deductive reasoning on the other. The following section explains
how it is that we may sensibly interpret processing structures and interaction
structures as instructions and the executions of those instructions respectively.

3.2 Instructions and Executions

How might we think of the interaction structures such as that in (21) and their
corresponding processing structures such as that in (23) with respect to our
wider concern with interactive mono-agent reasoning? We can think of process-
ing structures as instructions, and of their corresponding interaction structures
as the result of carrying out or executing the corresponding instruction, i.e., as
executions.

Take the instruction in (23). If α is in state x, then α is on her way to
knowing explicitly that ψ, but she is not there yet. α’s being in state x means
that α knows explicitly what is required in order that she come to know explicitly
that ψ. Her first step is to establish B(σ ⇒ φ), which involves her being in state
y. Her second step is to combine this state y with her previous state x. In
other words, we read the iterated state–combination sequence corresponding to
process structures such as ((x • y) • v) • t[v s] in (23) from the inside–out.

This first interaction or merge will result in two things. α will know explicitly
that B, and also be in a new state z C ((A(E) which follows from this
first interaction. This corresponds to the first leftwards–transfer across the
processing–gate. That is, α has moved from 1 ` B ((C ((A (E)) to

12

B ⊗ 1 ` (C ((A(E)) with the establishing of B allowing α to get rid of 1
and arrive at B ` (C ((A(E)).

How might we interpret 1? That is, how might we make sense of the initial
state x of α s.t. x 1? We do so in exactly the sense stipulated above; α being
in state x which carries the information that 1, is simply that state in which α
knows what steps must be taken in order to establish E, and hence be in state
s. But knowing the steps to take os not the same thing as having actually taken
them.

The next step for α is for her to establish σ(C), which entails that she be
in state v C. By combining v with z, α will then be in state w A (E.
This corresponds to the second leftwards–transfer across the processing–gate,
such that α has moved from B ` (C ((A (E)) to C ⊗ B ` A (E. The
final steps for α are that she establish φ ⇒ ψ(A), which entails her being in
state t A. Then α must combine t with her previous state w. This will entail
α being in state s E, where ψ(E). This corresponds to the third left–wards
move across the processing–gate, such that α has moved from C ⊗B ` A(E,
to A⊗ (C ⊗B) ` E.

What has occurred is this: By following the instructions laid out in the
processing structure, α has extracted the very interaction structure who’s “acti-
vation” will cause her to know explicitly that ψ. This fact has a straightforward
interpretation in terms of the data–base structure, or grammar, of the “cognitive
langauge” of deductive reasoning. The interpretation of the end–results of ap-
plications of the residuation conditions in (15) as instructions and executions is
a powerful one. The instructions tell us how to construct a well-formed sentence
in the cognitive language of deductive reasoning in precisely the same manner as
the types in categorial grammar instruct us on constructing well-formed terms
or sentences in natural language. In natural language, if the result of one of
these constructions is uttered (or conceived of) by an agent, then information
is transmitted to other agents. Something meaningful, or informationally well-
behaved, will have occurred.

The deductive reasoning case is the same. When the results of carrying
out the instructions are executed, something informationally well-behaved has
occurred. In this case, the occurrence is that the agent has accessed the infor-
mation in the conclusion, or simply put; the agent is in a state such that the
agent knows explicitly the information that the conclusion encodes. That de-
ductive reasoning procedures should have their behaviour accurately described
by formal tools originally developed to specify that mathematical behaviour of
natural language semantics is, ultimately, not as surprising as it might first ap-
pear. After all, when we are engaged in explicit acts of deductive reasoning, it
is rather like we are talking to ourselves.

Mobiles impose the relevant constraints on the grammar for the simple reason
that left–right exchange within pairs is harmless for a significant fragment of
deductive reasoning. It is by no means the case that such constraints may not
be either relaxed or strengthened (more on this in the following section), but
they are a useful place to start.

13

4 Conclusion

By paying proper attention to consequence and interaction in logic, we have
a system of resource–management and processing on the database of mono–
agent reasoning dynamics. Although what we have is far from a complete set of
constraints, or a full grammar (more on this below), what do have, hopefully,
is a proof of concept. In subsection 4.2 we will revisit the notion of epistemic
closure in light of the addition of dynamic information–merging operations. The
final task, undertaking in 4.3 is too sketch the direction for future research. The
first step however, is a brief review.

4.1 Summary

In terms of grammatically obedient databases or “sentences” in the language of
deductive reasoning, the processing structures are instructions for constructing
a grammatically well-formed sentence in the language. The resulting interaction
structures are the very grammatically well-formed sentences in the language of
deductive reasoning that the processing structures are intended to bring about.
That is, in exactly the same way that types in linguistic applications of categorial
Grammars give you the instructions for well–formed sentences in the grammar
of natural language, the processing structures/types here give you the instruc-
tions for grammatically well–formed “sentences” in the cognitive–grammar of
deductive reasoning.

Whether or not such sentences are well–formed is a function of their in-
put/output relations. To make the point again, if σ(A) and φ ⇒ ψ(B), then
A⊗B is not well–formed, since it is the case that φ⇒ ψ : A0, or φ⇒ ψ : A→ 0.
In the fragment of deductive reasoning that we are considering, if we were to
allow associativity or strong commutation (or any of the other well–known struc-
tural rules), then we would allow grammatical transformations, or transforma-
tions on the structure of the database, that would ruin the ability of information
to flow.

The information in a database will be structured in various ways depending
on the data–types it contains. The constraints turn on the use to which the
information is to be put. The database structure, or grammar, of the “cognitive
language” of mono–agent deductive reasoning, may be sensibly said to have
many of its interesting base–properties captured by the residuated structure
encoding mobiles with bottom and identity, namely NLP01.

4.2 Epistemic Closure Revisited

With this much in place, where do we stand on our motivating principle from
subsection 1.1? Taking (X ⊗ Y)α to stand for α’s merging of X and Y , we
might lay out a working principle for epistemic closure:

Kα(φ⇒ ψ) ∧Kαφ⇒ (((φ⇒ ψ)⊗ φ)α ⇒ Kαψ) (24)

14

However, this would be a mistake. Until the structure of the data–base is
specified (equivalently, until the grammar of the relevant fragment of the cogni-
tive language of deductive reasoning is specified), such a dynamic information–
merging principle is not particularly interesting in itself. In fact, one of the goals
of this article has been to demonstrate that such an approach is wrong–headed
from the start.

The problem with (2) is that it is a static consequence principle, and knowl-
edge is the result of dynamic reasoning (or communicative) scenarios. Not only
are counterexamples too easy to come by, but in the case of static axioms like
(2), there are only counterexamples. Dynamic, or interactive axioms such as
(24) do not deliver much more.

The problem is a methodological one. The interesting epistemic principles
are those concerning the structural and dynamic properties of the data–bases
relevant to particular epistemic contexts: mono–agent, multi–agent, empirical–
information, deductive/inductive/abductive–reasoning, recall–constraints, com-
munication–variance, and combinations of these and more. If such epistemic
contexts are not specified, then for particular epistemic axioms to be true, they
will need to be at such a generalised level of abstraction that it is unlikely that
they will tell us anything interesting at all. Consider the T–Axiom:

2φ⇒ φ (25)

under an epistemic interpretation so as to get:

Kαφ⇒ φ (26)

(26) is a perfect example of just this. (26) is true in absolutely any epistemic
context whatsoever. However it is not telling us anything interesting about any
of these contexts, nor for that matter is it telling us anything interesting about
the knowledge–states of agents, apart from the definitional one – if it is true
that an agent knows that A, then it is true that A. We need more than this. We
also need a methodological basis that can reliably deliver more than this for an
analysis of the full range of dynamic properties at work in deductive reasoning
actions.

If there is one thing that dynamic/interactive epistemic logic should take
from static epistemic logic, it is the knowledge that there is little to gain from
top–down syntactic–axiom–driven approaches. Modern research in modal logic
has long abandoned such an approach, witness Blackburn, de Rijke, and Venema
(2002). For epistemic logic (that is based on modal logic after all) to contribute
to our understanding of the rich tapestry of epistemic contexts that underpin
our success as rational agents in the natural world, it should follow suit. Where
to next?

4.3 The Future

We might think of the fragment of deductive reasoning that we have examined
here as the commutation invariant fragment. It is a natural place to start with

15

an analysis, as commutative–invariant residuated structures underpin the base-
calculas of mono–agent deductive reasoning at the level of abstraction of unin-
terpreted propositional types. Here, every process is commutation invariant.6

Commutation variant types will only arise in the presence of other structural
rules, in which case they will not be pure commutation variant types, but rather
commutation + rule–x variant types.

There will also be fragments of deductive reasoning that are rule–x invariant
where commutation is disallowed, as well as fragments that are commutation
+ rule–x invariant, and so on. We should think of these invariant fragments
as grammatical categories in the cognitive language of deductive reasoning, in
just the same way as we do with structural–rule–invariant fragments of natural
language. Specifying the full grammar of the cognitive language of mono–agent
deductive reasoning will involve mapping out just these relations between var-
ious invariant and variant types. The present article has been an attempt to
contribute to a fragment of such an investigation.7

References

Ajdukiewicz, K. (1935): Die Syntaktische Konnexitat, Studia Philosophica, 1–
27.

Baltag, A., Moss, L., and Solecki, S. (1998): The logic of Public Announcements,
Common Knowledge and Private Suspicions, Proceedings of Tark‘98, 43–56,
Morgan Kaufmann Publishers.

Baltag, A, and Smetts, S. (2008): The Logic of Conditional Doxastic Actions,
forthcoming in R. van Rooij and K. Apt (eds.): Texts in Logic and Games,
Special issue on New Perspectives on Games and Interaction, Amsterdam
University Press.

van Benthem, J. (2009): Logical Dynamics of Information and Interaction,
manuscript.

Blackburn, P., de Rijke, M., and Venema, Y. (2002): Modal Logic, Cambridge
University Press.

6In interpreted contexts, strict temporal preservation, corresponding to commutative vari-
ance will obviously have a roll to play.

7I am greatly indebted to Johan van Benthem for first suggesting to me that a deeper
examination of the categorial Grammar literature may make a positive contribution to the
analysis of mono-agent dynamics. As always, his advice was good. I am also indebted to
Greg Restall for answering endless questions about various commutation types. I would also
like to thank Patrick Allo, Jake Chandler, Hans van Ditmarsh, Marie Duzi, Allen Mann, and
Jerry Seligman for helpful comments and suggestions. Any remaining mistakes remain my
own. Vincent Hendricks at Synthese has continually gone out of his way to make the logistics
possible, a generosity for which I am grateful. Most of all, I would like to thank Igor Douven,
who, in his capacity as the director of the Formal Epistemology Project, has created the most
delightful research environment that anyone could possibly wish for.

16

Busckowski, W. (1986): Completeness Results for Lambek Syntactic Calculus,
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 32, 13–
28.

van Ditmarsh, H., van der Hoek, W., and Kooi, B, (2008): Dynamic Epistemic
Logic, Springer, The Netherlands.

Lambek, J. (1958): The Mathematics of Sentence Structure, American Mathe-
matical Monthly, 65, 154–170.

Lambek, J. (1961): On the Calculus of Syntactic Types, in R. Jakobson (ed.):
Structure of Language and its Mathematical Aspects, American Mathematical
Society, Providence, 166–178.

Moortgat, M. (1995): Residuation in Mixed Lambek Systems, Research Tran-
script no. 10, Research Institute for Language and Speech (OTS), Utrect.

Sequoiah-Grayson, S. (2009a): Dynamic Negation and Negative Information,
Review of Symbolic Logic: 2.1, 233–248.

Sequoiah-Grayson, S. (2009b): Lambek Calculi with 0 and Test–Failure in DPL,
forthcoming in Linguistic Analysis.

Sequoiah-Grayson, S. (2009c): A Positive Information Logic for Inferential In-
formation, Synthese, 167: 2, pp. 409–431

17

